A Global Method for the Identification of Failure Modes in Fiberglass Using Acoustic Emission

نویسندگان

  • V. Arumugam
  • C. Suresh Kumar
  • C. Santulli
  • F. Sarasini
  • Joseph Stanley
چکیده

The various failure mechanisms in bidirectional glass/epoxy laminates loaded in tension are identified using acoustic emission (AE) analysis. AE data recorded during the tensile testing of a single layer specimen are used to identify matrix cracking and fiber failure, while delamination signals are characterized using a two-layer specimen with a pre-induced defect. Parametric studies using AE count rate and cumulative counts allowed damage discrimination at different levels of loading and Fuzzy C-means clustering associated with principal component analysis were used to discriminate between failure mechanisms. The two above methods led to AE waveform selection: On selected waveforms, Fast Fourier Transform (FFT) enabled calculating the frequency content of each damage mechanism. Continuous wavelet transform allowed identifying frequency range and time history for failure modes, whilst noise content associated with the different failure modes was calculated and removed by discrete wavelet transform. Short Time FFT finally highlighted the possible failure mechanism associated with each signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damage Energy Evaluation in [55/-55]9 Composite Pipes using Acoustic Emission Method

In this study, the longitudinal and hoop tensile strengths of an industrial ±55° Glass Reinforced Epoxy (GRE) pipe with eighteen layers as well as the associated failure mechanisms are determined. To obtain the longitudinal and hoop tensile strengths values, three specimens are cut from the studied GRE pipe in each direction. A comparison is done between both the strength values, and the fractu...

متن کامل

Cluster Analysis of Acoustic Emission Signals for Carbon/Epoxy Composite in Four-point Bending Test (RESEARCH NOTE)

Due to the extensive use of composites in various industries and the fact that defects reduce ultimate strength and efficiency during operation, detection of failures in composite parts is very important. The aim of this paper is to use Acoustic Emission (AE) non-destructive method in four-point bending test of carbon/epoxy composite to analyze and examine the failure mechanisms. This method is...

متن کامل

Flexural monitoring of carbon fiber/epoxy composite by acoustic emission

Carbon / epoxy composite is one of the most useful polymer matrix composites that has special properties such as high strength-to-weight ratio, high hardness, high corrosion resistance, Resistance to nuclear radiation has high consumption in different industries such as aerospace industry. Therefor monitoring of loading of this type of composite is important. In order to determine failure mecha...

متن کامل

risk assessment by integration approach of FMEA and multi criteria decision-making in the interval valued fuzzy environment: case study hydraulic pump manufacturing industry

Abstract Background and aims: Nowadays with increasing global competition, companies apply several scientific methods to identify, assess and remove potential failures in production process. The main goal of this study was identification and analysis of potential failure modes in a hydraulic pump manufacturing company by using combination of interval valued fuzzy Analytic network process (IVF-...

متن کامل

On the Use of Acoustic Emission and Digital Image Correlation for Welded Joints Damage Characterization

A series of tests have been conducted to investigate fatigue damage characterization in corroded welded steel plates using structural health monitoring (SHM) techniques. Acoustic Emission (AE) is a non-destructive testing (NDT) technique with potential applications for locating and monitoring fatigue cracks in service. In the present work, AE is implemented to characterize damage during crack e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011